Home
Class 11
MATHS
The position vectors of the vertices of...

The position vectors of the vertices of a triangle are `vec(i) +2 vec(j) +3 vec(k) , 3 vec(i) -4 vec(j) +5 vec (k) and -2vec (i) +3 vec (j) - 7 vec (k) `Find the perimeter of a triangle .

Text Solution

Verified by Experts

The correct Answer is:
` sqrt(44)+sqrt(218)+sqrt(110)`
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 4

    FULL MARKS|Exercise PART-IV|6 Videos
  • SAMPLE PAPER 4

    FULL MARKS|Exercise PART-II|10 Videos
  • MODEL TEST PAPER

    FULL MARKS|Exercise PART-1|18 Videos
  • SAMPLE PAPER - 01

    FULL MARKS|Exercise PART - III|16 Videos

Similar Questions

Explore conceptually related problems

Find the torque of the resultant of the three forces represented by -3 vec(i) + 6 vec(j) - 3 vec(k) , 4 vec(i) - 10 vec(j) + 12 vec(k), and 4 vec(i) + 7 vec(j) acting at the point with position vector 8 vec(i) - 6 vec(j) - 4 vec(k) , about the point with position vector 18 vec(i) + 3 vec(j) - 9 vec(k) .

Show that the vector veci -2 vec j +3 vec k , -2 vec i + 3 vecj -4 vec k " and " -vec j + 2 vec k are coplanar.

Show that the vector veci -2 vec j +3 vec k , -2 vec i + 3 vecj -4 vec k " and " -vec j + 2 vec k are coplanar.

The position vectors of two point masses 10 kg and 5 kg are (-3vec(i)+2vec(j)+4vec(k))m " and " (3vec(i)+6vec(j)+5vec(k))m respectively. Locate the position of centre of mass.

Find lambda if the vectors vec a= vec i+3 vec j+ vec k , vec b= 2 vec i- vec j- vec k and vec c= lambda vec i+7 vec j+ 3 vec k are coplanar

The position vectors of the vertices of DeltaABC are 3 hat i - 4 hat j - 4 hat k , 2 hat i - hat j + hat k and hat i - 3 hat j - 5 hat k respectively. (i) Find vec (AB), vec(BC) and vec(CA) . (ii) Prove that DeltaABC is a right angled triangle. (iii) Find the unit vector perpendicular to both vec (AB) and vec(BC) .

Consider the vectors vec a = hat i + 2 hat j - 3 hat k and vec b = 4 hat i - hat j + 2 hat k . (i) Find |vec a| and |vec b| . (ii) Find vec a. vec b (iii) Find the projections of vec a on vec b and vec b on vec a .

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) - vec(b)

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) +vec(b)