Home
Class 11
MATHS
Prove that sin (45^(@) + theta) - sin ...

Prove that
sin `(45^(@) + theta) - sin (45^(@) - theta) = sqrt(2) sin theta`

A

`2 cos theta`

B

1

C

0

D

`2 sin theta`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • SOLVED PAPER 10

    FULL MARKS|Exercise PART-II|8 Videos
  • SOLVED PAPER 10

    FULL MARKS|Exercise PART-III|9 Videos
  • SETS, RELATIONS AND FUNCTIONS

    FULL MARKS|Exercise Exercise -1.5|25 Videos
  • TRIGONOMETRY

    FULL MARKS|Exercise Exercise 3.12|20 Videos

Similar Questions

Explore conceptually related problems

Prove that sin (pi + theta) = - sin theta

Prove that sin (30^(@) + theta) + cos (60^(@) + theta) = cos theta

Prove that sin (270^(@)-theta) sin (90^(@)-theta)-cos(270^(@)-theta) cos (90^(@)+theta)+1=0

Prove that -(cot (180^(@) + theta) sin (90^(@) - theta) cos (-theta))/(sin (270^(@) + theta) tan(-theta) coses (360^(@) + theta)) = cos^(2) theta cot theta .

The value of sin(45^(@)+theta)-cos (45^(@)-theta) is ..........

Prove that sin^(4) theta + cos^(4) theta = 1 - 2 sin^2 theta cos^(2) theta

Prove that (cot(180^(@) + theta) sin (90^(@)-theta) cos(-theta))/(sin(270^(@) + theta) tan(-theta) "cosec"(360^(@) + theta)) = cos^(2)theta cot theta .

Prove that sin (theta)/(2) sin"" (7 theta)/(2) + sin ""(3theta)/(2) sin ""(11 theta)/(2) = sin 2theta sin5 theta .

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is