Home
Class 11
MATHS
If int f (x) dx = g (x) +c, then int f...

If ` int f (x) dx = g (x) +c, then int f(x)g' (x)dx`

A

`int (f(x))^2 dx`

B

`int f(x)g(x)dx`

C

`int f'(x)g(x) dx`

D

`int [g(x)]^2 dx`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 14

    FULL MARKS|Exercise PART - II|8 Videos
  • SAMPLE PAPER 14

    FULL MARKS|Exercise PART-III|3 Videos
  • SAMPLE PAPER 13

    FULL MARKS|Exercise PART|43 Videos
  • SAMPLE PAPER 16 (UNSOLVED

    FULL MARKS|Exercise PART-IV|7 Videos

Similar Questions

Explore conceptually related problems

If int f(x)dx=psi(x) , then int x^5f(x^3)dx

int_(a)^(b) f(x) dx =

"If " int sinx d(secx)=f(x)-g(x)+c, then

Evaluate: ifintg(x)dx=g(x),t h e nintg(x){f(x)+f^(prime)(x)}dx

If int f'(x) e^(x^(2))dx = (x-1)e^(x^(2))+c then f (x) is . . . . .

Let f and g be continuous fuctions on [0, a] such that f(x)=f(a-x)" and "g(x)+g(a-x)=4 " then " int_(0)^(a)f(x)g(x)dx is equal to

Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n both f(x)a n dg(x) are odd functions f(x) is monotonic function f(x)=g(x) has no real roots int(f(x))/(g(x))dx=-1/x+3/(x^3)+c

If int (Insqrtx)/x dx = g(x)+C where g(1) = 0, then g(e^(6)) is equal to

If fa n dg are continuous function on [0,a] satisfying f(x)=f(a-x)a n dg(x)+g(a-x)=2, then show that int_0^af(x)g(x)dx=int_0^af(x)dxdot