Home
Class 11
MATHS
Find (dy)/(dx) if siny=ycos2x...

Find `(dy)/(dx)` if `siny=ycos2x`

Text Solution

Verified by Experts

The correct Answer is:
We have `siny=ycos2x`
Differentiating,`d/(dx)siny=d/(dx)(ycos2x)`
That is ,`cosydy/dx=y(-2sin2x)+cos2xdy/dx`
This implies `2(cosy-cos2x)dy/dx=-2ysin2x` or `dy/dx=(-2ysin2x)/(cosy-cos2x)`.
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 16 (UNSOLVED

    FULL MARKS|Exercise PART-III|10 Videos
  • SAMPLE PAPER 16 (UNSOLVED

    FULL MARKS|Exercise PART-IV|7 Videos
  • SAMPLE PAPER 16 (UNSOLVED

    FULL MARKS|Exercise PART-IV|7 Videos
  • SAMPLE PAPER 14

    FULL MARKS|Exercise PART - IV|8 Videos
  • SAMPLE PAPER-07 (UNSOLVED)

    FULL MARKS|Exercise PART-IV|7 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if sin y = y cos 2x

Find (dy)/(dx) if y =e^(x) sin 2x

Find (dy)/(dx) for y=x^xdot

Find (dy)/(dx)" if "x-y = pi .

(i). If y=x^(3)-1 , find (dy)/(dx) . (ii). If y=2x^(2)+4 , find (dy)/(dx)

Find (dy)/(dx) if x^(2)+y^(2)=1

Find (dy)/(dx) if x^(2)+y^(2)=1

Find (dy)/(dx) if y=log{e^x((x-2)/(x+2))^(3/4)}

Find (dy)/(dx) of the functions. x^(y)+y^(x)=1 .