Home
Class 11
MATHS
Without expanding the determinant prove ...

Without expanding the determinant prove that `|[s,a^(2),b^(2)+c^(2)],[s,b^(2),c^(2)+a^(2)],[s,c^(2),a^(2)+b^(2)]|=0`

Text Solution

Verified by Experts

The correct Answer is:
`|[s,a^2,b^2+c^2],[s,b^2,c^2+a^2],[s,c^2,a^2+b^2]|=|[s,a^2,a^2+b^2+c^2],[s,b^2,a^2+b^2+c^2],[s,c^2,a^2+b^2+c^2]|(c_3toc_3+c_2)`
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 16 (UNSOLVED

    FULL MARKS|Exercise PART-III|10 Videos
  • SAMPLE PAPER 16 (UNSOLVED

    FULL MARKS|Exercise PART-IV|7 Videos
  • SAMPLE PAPER 16 (UNSOLVED

    FULL MARKS|Exercise PART-IV|7 Videos
  • SAMPLE PAPER 14

    FULL MARKS|Exercise PART - IV|8 Videos
  • SAMPLE PAPER-07 (UNSOLVED)

    FULL MARKS|Exercise PART-IV|7 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}

Prove that |(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2))|=4a^(2)b^(2)c^(2).

Show that |(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2))|=0 .

Show that |{:(b+c,bc,b^(2)c^(2)),(c+a,ca,c^(2)a^(2)),(a+b,ab,a^(2)b^(2)):}| = 0

Prove that |(a,b),(c,d)|^(2)=|(a^(2)+c^(2),ab+cd),(ab+cd,b^(2)+d^(2))|

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

If a,b and c are non- zero real number then prove that |{:(b^(2)c^(2),,bc,,b+c),(c^(2)a^(2),,ca,,c+a),(a^(2)b^(2),,ab,,a+b):}| =0

Prove that |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=(a-b)(b-c)(c-a)

Prove that bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2) = s^(2)