Home
Class 11
MATHS
int(e^(x))/(e^(x)+1)dx=……………...

`int(e^(x))/(e^(x)+1)dx=`……………

A

`1/2x+c`

B

`log(e^(x)+1)+c`

C

`x+e^(x)+c`

D

`loge^(x)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER -17

    FULL MARKS|Exercise PART-II|10 Videos
  • SAMPLE PAPER -17

    FULL MARKS|Exercise PART -III|10 Videos
  • SAMPLE PAPER - 3

    FULL MARKS|Exercise PART - IV|7 Videos
  • SAMPLE PAPER -19

    FULL MARKS|Exercise SAMPLE PAPER UNSOLVED-19(IV)|6 Videos

Similar Questions

Explore conceptually related problems

int(e^(x)+1)/(e^(x))dx :

int(e^x)/(e^(2x)+4)dx

int(1)/(e^(x))dx=………..

Answer the equation: int(e^(2x)-1)/(e^(2x)+1)dx .

Evaluate: int(e^(2x)-2e^x)/(e^(2x)+1)dx

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(x)/(e^(x^(2)))dx

If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C , then

int(1)/(x)ln((x)/(e^(x)))dx=