Home
Class 11
MATHS
If veca,vecb are any two vectors, then p...

If `veca,vecb` are any two vectors, then prove that `|vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2)`

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER -17

    FULL MARKS|Exercise PART -IV|7 Videos
  • SAMPLE PAPER -17

    FULL MARKS|Exercise PART-II|10 Videos
  • SAMPLE PAPER - 3

    FULL MARKS|Exercise PART - IV|7 Videos
  • SAMPLE PAPER -19

    FULL MARKS|Exercise SAMPLE PAPER UNSOLVED-19(IV)|6 Videos

Similar Questions

Explore conceptually related problems

For any two vectors veca and vecb prove that |vecaxxvecb|^(2)+(veca*vecb)^(2)=|veca|^(2)|vecb|^(2)

If veca.vecb are say two vectors, then prove that abs(vecaxxvecb)^(2)+(veca.vecb)^(2)=abs(veca)^(2)abs(vecb)^(2)

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

for any two vectors veca and vecb , prove that abs(vecaxxvecb)^(2)+(veca.vecb)^(2)=abs(veca)^(2)abs(vecb)^(2) .

For any two vectors veca and vecb|veca X vecb|^(2)+|veca.vecb| is:

For any two vectors vec a and vec b , prove that | vec a xx vec b|^(2) = |vec a|^(2)|vec b|^(2) - (vec a . vecb)^(2) = [[veca.veca veca .vecb], [veca.vecb vec b.vecb]]

If |veca| = |vecb|=|veca+vecb|=1 then prove that |veca-vecb|=sqrt(3) .

Show that (veca-vecb)xx(veca+vecb)=2(vecaxxvecb)

If veca and vecb are non - zero vectors such that |veca + vecb| = |veca - 2vecb| then

Let veca and vecb be two unit vectors then maximum value of (|veca+vecb|^2-|veca-vecb|^2)/(|veca+vecb|^2+|veca-barb|^2) is equal to