Home
Class 11
MATHS
The coordinates of a moving point P are ...

The coordinates of a moving point P are `((a)/(2)(co sectheta+sin theta),(b)/(2)(co sec theta-sin theta))` where `theta` is a variable parameter. Show that the equation of the locus of P is `b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2)`

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER -19

    FULL MARKS|Exercise SAMPLE PAPER UNSOLVED-19(III)|10 Videos
  • SAMPLE PAPER -17

    FULL MARKS|Exercise PART -IV|7 Videos
  • SAMPLE PAPER -5

    FULL MARKS|Exercise PART-I (CHOOSE THE CORRECT ANSWER)|2 Videos

Similar Questions

Explore conceptually related problems

The coordinates of a moving point P are (a/2(cosectheta+sintheta), b/2(cosectheta-sintheta)), " where " theta is a variable parameter. Show that the equation of the locus P is b^(2)x^(2)-a^(2)y^(2)=a^(2)b^(2) .

The locus of a moving point P(a cos^(3)theta,a sin^(3)theta) is:

Evaluate int_(0)^((pi)/(2))(cos theta d theta)/((sin theta +2)(sin theta +3)) .

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

If cos 3theta+sin3theta+(2sin2theta-3)(sin theta-cos theta)gt0 , then theta lies in

Solve the equations: sin 2theta - cos 2 theta - sin theta + cos theta = 0

Prove that (sin theta+sin 2theta)/(1+cos theta+cos 2 theta)=tan theta