Home
Class 11
MATHS
Prove that |{:(1,a,a^2),(1,b,b^2),(1,c,c...

Prove that `|{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a)`.

Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER-20 (MOCK TEST PAPER)

    FULL MARKS|Exercise PART-IV|5 Videos
  • SAMPLE PAPER-20 (MOCK TEST PAPER)

    FULL MARKS|Exercise PART-II|10 Videos
  • SAMPLE PAPER-07 (UNSOLVED)

    FULL MARKS|Exercise PART-IV|7 Videos
  • SAMPLE PAPER-6 (UNSOLVED)

    FULL MARKS|Exercise PART-IV|6 Videos

Similar Questions

Explore conceptually related problems

By using properties of determinants , show that : (i) {:[( 1,a,a^(2)),( 1,b,b^(2)),( 1,c,c^(2))]:}=(a-b)(b-c) (c-a) (ii) {:[( 1,1,1),( a,b,c) ,(a^(3) , b^(3), c^(3))]:} =( a-b) (b-c)( c-a) (a+b+c)

Prove that |(1,a,a^(2)-bc),(1,b,b^(2)-ca),(1,c,c^(2)-ab)|= 0 .

Sove that |(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|^(2)=|(1+a^(2)+a^(4),1+ab+a^(2)b^(2),1+ac+a^(2)c^(2)),(1+ab+a^(2)b^(2),1+b^(2)+b^(4),1+bc+b^(2)c^(2)),(1+ac+a^(2)c^(2),1+ba+b^(2)c^(2),1+c^(2)+c^(4))| and hence show RHS determinent is =(a-b)^(2)(b-c)^(2)(c-a)^(2)

Prove that =|1 1 1 a b c b c+a^2a c+b^2a b+c^2|=2(a-b)(b-c)(c-a)

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

Prove that |a b+c a^2b c+a b^2c a+b c^2|=-(a+b+c)xx(a-b)(b-c)(c-a)dot

Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+1^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-1)

Prove that |(1/a^(2),bc,b+c),(1/b^(2),ca,c+a),(1/c^(2), ab, a+b)|=0

Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:}