Home
Class 11
MATHS
Prove that ((2n)!)/(n!) =2^(n) (1,3,5,……...

Prove that `((2n)!)/(n!) =2^(n) (1,3,5,……..(2n-1))`.

Promotional Banner

Topper's Solved these Questions

  • EXAMINATION QUESTION PAPER - JUNE 2019

    FULL MARKS|Exercise PART -III|10 Videos
  • EXAMINATION QUESTION PAPER - JUNE 2019

    FULL MARKS|Exercise PART -IV|7 Videos
  • EXAMINATION QUESTION PAPER - JUNE 2019

    FULL MARKS|Exercise PART -IV|7 Videos
  • DIFFERENTIAL CALCULUS - LIMITS AND CONTINUITY

    FULL MARKS|Exercise EXERCISE 9.6|25 Videos
  • EXAMINATION QUESTION PAPER MARCH 2019

    FULL MARKS|Exercise MATHEMATICS|49 Videos

Similar Questions

Explore conceptually related problems

Show that ((2n)!)/(n!) = 2^(n) { 1,3,5 ,…( 2n -1) }

Prove that ((n + 1)/(2))^(n) gt n!

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

If n is a positive integer, prove that 1-2n+(2n(2n-1))/(2!)-(2n(2n-1)(2n-2))/(3!)++(-1)^(n-1)(2n(2n-1)(n+2))/((n-1)!)= (-1)^(n+1)(2n)!//2(n !)^2dot

Prove that (1^(2))/(3).^(n)C_(1)+(1^(2) + 2^(2))/(7).^(n)C_(2)+(1^(2)+2^(2)+3^(2))/(7).^(n)C_(3)+"...." +(1^(2)+2^(3)+"....."+n^(2))/(2n+1).^(n)C_(n) = (n(n+3))/(6)2^(n-2) .

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that n! ( n +2) = n ! + ( n + 1) !

Prove that (1 + i)^(n) + (1 - i)^(n) = 2^((n + 2)/(2)) cos (n pi)/(4)