Home
Class 12
MATHS
If adj A = [[-1,2,2],[1,1,2],[2,2,1]], f...

If adj A = `[[-1,2,2],[1,1,2],[2,2,1]]`, find `A^(-1)`.

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise EXAMPLE QUESTIONS SOLVED|10 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise EXERCISE -1.1|15 Videos
  • APPLICATIONS OF INTEGRATION

    FULL MARKS|Exercise ADDITIONAL PROBLEMS|35 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise Additional Questions Solved|59 Videos

Similar Questions

Explore conceptually related problems

If adj A=[[4,-2,-3],[-3,2,2],[-2,1,2]] , find A^(-1) .

If A=[[1,2,1],[1,1,2],[2,2,1]] verify A(adj A)=(adj A)A=|A|I_(3) .

If A=[[1,1,2],[1,2,2],[2,2,1]] verify that A(adj A) = (adj A)A = |A|I_(3) .

Let A=[[-1, -2 , -2],[ 2, 1, -2], [2, -2, 1]] If adj. A=k A^T theri the value of 'K' is

Find the rank of the matrix [[1,2,2,1],[2,1,2,1],[2,2,1,-1]] by reducing to an echelon from :

Find the rank of the matrix [[1,-1,2],[3,1,-2],[2,2,1]] by reducing it to a row - echelon matrix.

If adj A=[[2,1],[3,-1]] , adj B=[[2,3],[-1,2]] then adj (AB) is :

If adj A=[[2,3],[4,1]] and adj B=[[1,-2],[-3,1]] then adj (AB) is :

If A=[(3,1,2),(1,2,3)] ,B= [(1,0),(2,1),(1,1)] find AB and BA.

FULL MARKS-APPLICATIONS OF MATRICES AND DETERMINANTS-ADDITIONAL QUESTIONS SOLVED
  1. If adj A = [[-1,2,2],[1,1,2],[2,2,1]], find A^(-1).

    Text Solution

    |

  2. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  3. Using elementary transformations find the inverse of the matrix [{:(1,...

    Text Solution

    |

  4. Using elementary transformation find the inverse of the matrix [{:(3,-...

    Text Solution

    |

  5. Using elementary transformations find the inverse of the matrix [{:(1,...

    Text Solution

    |

  6. Using elementary transformation, find the inverse of the following mat...

    Text Solution

    |

  7. Given A=[{:(1,-1,2),(3,0,-2),(1,0,3):}] verify that A(adjA)=(adjA)A=|A...

    Text Solution

    |

  8. If A = [{:(3,2),(7,5):}] "and B" = [{:(-1,-3),(5,2):}] "verify that" (...

    Text Solution

    |

  9. If A={:((3,1),(-1,2)):} show that A^(2)-5A+7I(2)=0

    Text Solution

    |

  10. If A=[{:(2,-1,1),(-1,2,-1),(1,-1,2):}] verify that A^(3)-6A^(2)+9A-4I=...

    Text Solution

    |

  11. Find the inverse of the matrices [{:(1,-1,2),(0,2,-3),(3,-2,4):}]

    Text Solution

    |

  12. Find the rank of the following matrices. [{:(1,-1,1),(3,-2,3),(2,-3,4)...

    Text Solution

    |

  13. Find the rank of the following matrices. [{:(0,1,2,1),(2,-3,0,-1),(1,1...

    Text Solution

    |

  14. Find the rank of the matrix [[1,-2,3,4],[-2,4,-1,-3],[-1,2,7,6]]

    Text Solution

    |

  15. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  16. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  17. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  18. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  19. Using elementary transformations, find the inverse of the following ma...

    Text Solution

    |

  20. Using elementary transformations, find the inverse of the following ma...

    Text Solution

    |

  21. Using elementary transformations, find the inverse of the following ma...

    Text Solution

    |