Home
Class 12
MATHS
Verify the property (A^(T))^(-1)=(A^(-1)...

Verify the property `(A^(T))^(-1)=(A^(-1))^(T)` with `A=[{:(2,9),(1,7):}]`

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise EXAMPLE QUESTIONS SOLVED|10 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise EXERCISE -1.1|15 Videos
  • APPLICATIONS OF INTEGRATION

    FULL MARKS|Exercise ADDITIONAL PROBLEMS|35 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise Additional Questions Solved|59 Videos

Similar Questions

Explore conceptually related problems

Verify that (A^(-1))^(T)= (A^(T))^(-1) for A = [(-2,-3),(5,-6)] .

Verify that (AB)^(T) = B^(T) A^(T) if A = ({:( 2 , 3 , -1) , (4 , 1 , 5):}) and B = ({:( 1 , 2) , ( 3 , -3) , (2 , 6)):}

If A=[[3,5],[2,1]] Show that (A^(T))^(-1)=(A^(-1))^(T) .

Verify that (AB)^(T) = B^(T) A^(T) if A= [(2,3,-1),(4,1,5)] and B= [(1,-2),(3,-3),(2,6)]

Verify property 1 for Delta ={:[( 2,-3,5),(6,0,4) ,( 1,5,-7) ]:}

Integrate the functions e^(t)((1)/(t)-(1)/(t^(2)))

Verify Property 2 for Delta ={:[( 2,-3,5),(6,0,4),( 1,5,-7)]:}

Solve: (4t)/(t^2-25)=1/(5-t)

Differentiate the following : h(t)=(t-1/t)^(3/2)

FULL MARKS-APPLICATIONS OF MATRICES AND DETERMINANTS-ADDITIONAL QUESTIONS SOLVED
  1. Verify the property (A^(T))^(-1)=(A^(-1))^(T) with A=[{:(2,9),(1,7):}]

    Text Solution

    |

  2. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  3. Using elementary transformations find the inverse of the matrix [{:(1,...

    Text Solution

    |

  4. Using elementary transformation find the inverse of the matrix [{:(3,-...

    Text Solution

    |

  5. Using elementary transformations find the inverse of the matrix [{:(1,...

    Text Solution

    |

  6. Using elementary transformation, find the inverse of the following mat...

    Text Solution

    |

  7. Given A=[{:(1,-1,2),(3,0,-2),(1,0,3):}] verify that A(adjA)=(adjA)A=|A...

    Text Solution

    |

  8. If A = [{:(3,2),(7,5):}] "and B" = [{:(-1,-3),(5,2):}] "verify that" (...

    Text Solution

    |

  9. If A={:((3,1),(-1,2)):} show that A^(2)-5A+7I(2)=0

    Text Solution

    |

  10. If A=[{:(2,-1,1),(-1,2,-1),(1,-1,2):}] verify that A^(3)-6A^(2)+9A-4I=...

    Text Solution

    |

  11. Find the inverse of the matrices [{:(1,-1,2),(0,2,-3),(3,-2,4):}]

    Text Solution

    |

  12. Find the rank of the following matrices. [{:(1,-1,1),(3,-2,3),(2,-3,4)...

    Text Solution

    |

  13. Find the rank of the following matrices. [{:(0,1,2,1),(2,-3,0,-1),(1,1...

    Text Solution

    |

  14. Find the rank of the matrix [[1,-2,3,4],[-2,4,-1,-3],[-1,2,7,6]]

    Text Solution

    |

  15. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  16. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  17. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  18. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  19. Using elementary transformations, find the inverse of the following ma...

    Text Solution

    |

  20. Using elementary transformations, find the inverse of the following ma...

    Text Solution

    |

  21. Using elementary transformations, find the inverse of the following ma...

    Text Solution

    |