Home
Class 12
MATHS
Verify (AB)^(-1)=B^(-1)A^(-1) with A=[{:...

Verify `(AB)^(-1)=B^(-1)A^(-1)` with `A=[{:(0,-3),(1,4)],B=[(-2,-3),(0,-1):}]`

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise EXAMPLE QUESTIONS SOLVED|10 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise EXERCISE -1.1|15 Videos
  • APPLICATIONS OF INTEGRATION

    FULL MARKS|Exercise ADDITIONAL PROBLEMS|35 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise Additional Questions Solved|59 Videos

Similar Questions

Explore conceptually related problems

Verify (AB)^(-1)= B^(-1) A^(-1) for A = [(2,1),(5,3)] and B= [(4,5),(3,4)] .

Verify that (AB)^(T) = B^(T) A^(T) if A= [(2,3,-1),(4,1,5)] and B= [(1,-2),(3,-3),(2,6)]

Verify that (AB)^(T) = B^(T) A^(T) if A = ({:( 2 , 3 , -1) , (4 , 1 , 5):}) and B = ({:( 1 , 2) , ( 3 , -3) , (2 , 6)):}

Compute the indicated products: (i) [(a,b),(-b,a)][(a,-b),(b,a)] (ii) [(1),(2),(3)][(2,3,4)] (iii) [(1,-2),(2,3)][(1,2,3),(2,3,1)] (iv) [(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4),(3,0,5)] (v) [(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)] (vi) [(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]

For the matrices A and B, verify that (AB)'=B'A' , where (i) A=[(1),(-4),(3)], B=[(-1,2,1)] (ii)A=[(0),(1),(2)],B=[(1,5,7)]

Verify that det (AB) = (det A) (det B) for A=[(4,3,-2),(1,0,7),(2,3,-5)] and B =[(1,3,3),(-2,4,0),(9,7,5)] .

Let A+2B=[(1,2,0),(6,-1,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,2)], then find tr(A)-tr(B).

Verify the property A(B+C) = AB+AC, when the matrices A,B, and C are given by A=[(2,0,-3),(1,4,5)],B=[(3,1),(-1,0),(4,2)],and C=[(4,7),(2,1),(1,-1)] .

FULL MARKS-APPLICATIONS OF MATRICES AND DETERMINANTS-ADDITIONAL QUESTIONS SOLVED
  1. Verify (AB)^(-1)=B^(-1)A^(-1) with A=[{:(0,-3),(1,4)],B=[(-2,-3),(0,-1...

    Text Solution

    |

  2. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  3. Using elementary transformations find the inverse of the matrix [{:(1,...

    Text Solution

    |

  4. Using elementary transformation find the inverse of the matrix [{:(3,-...

    Text Solution

    |

  5. Using elementary transformations find the inverse of the matrix [{:(1,...

    Text Solution

    |

  6. Using elementary transformation, find the inverse of the following mat...

    Text Solution

    |

  7. Given A=[{:(1,-1,2),(3,0,-2),(1,0,3):}] verify that A(adjA)=(adjA)A=|A...

    Text Solution

    |

  8. If A = [{:(3,2),(7,5):}] "and B" = [{:(-1,-3),(5,2):}] "verify that" (...

    Text Solution

    |

  9. If A={:((3,1),(-1,2)):} show that A^(2)-5A+7I(2)=0

    Text Solution

    |

  10. If A=[{:(2,-1,1),(-1,2,-1),(1,-1,2):}] verify that A^(3)-6A^(2)+9A-4I=...

    Text Solution

    |

  11. Find the inverse of the matrices [{:(1,-1,2),(0,2,-3),(3,-2,4):}]

    Text Solution

    |

  12. Find the rank of the following matrices. [{:(1,-1,1),(3,-2,3),(2,-3,4)...

    Text Solution

    |

  13. Find the rank of the following matrices. [{:(0,1,2,1),(2,-3,0,-1),(1,1...

    Text Solution

    |

  14. Find the rank of the matrix [[1,-2,3,4],[-2,4,-1,-3],[-1,2,7,6]]

    Text Solution

    |

  15. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  16. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  17. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  18. Using elementary transformations find the inverse of the following mat...

    Text Solution

    |

  19. Using elementary transformations, find the inverse of the following ma...

    Text Solution

    |

  20. Using elementary transformations, find the inverse of the following ma...

    Text Solution

    |

  21. Using elementary transformations, find the inverse of the following ma...

    Text Solution

    |