Home
Class 12
MATHS
If A=[[5,3],[-1,-2]], show that A^(2)-3A...

If `A=[[5,3],[-1,-2]]`, show that `A^(2)-3A-7I_(2)=O_(2)` Hence find `A^(-1)`.

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise EXERCISE -1.2|3 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise EXERCISE -1.3|5 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise EXAMPLE QUESTIONS SOLVED|10 Videos
  • APPLICATIONS OF INTEGRATION

    FULL MARKS|Exercise ADDITIONAL PROBLEMS|35 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise Additional Questions Solved|59 Videos

Similar Questions

Explore conceptually related problems

If A = [{:(5,3),(-1,-2):}], "show that" " "A^(2)-3A-7I_(2)=0_(2). Hence find A^(-1) .

If A={:((3,1),(-1,2)):} show that A^(2)-5A+7I_(2)=0

If A= {:[( 3,1),( -1,2) ]:} Show that A^(2) -5A +7I =O.Hence find A^(-1)

If A = [[2,1],[3,0]] find a and b such that A^(2)+aA+bl_(2)=0 Hence, find A^(-1) .

If A=[{:(4,3),(2,5):}] , find x and y such that A^(2)+xA+yI_(2)=O_(2) . Hence, find A^(-1) .

A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +11 I =O. Hence , find A^(-1)

If A= {:[( 2,-1,1),(-1,2,-1),(1,-1,2) ]:} Verify that A^(3) -6A^(2) +9A -4I=O and hence find A^(-1)

If A=[{:(2,-1,1),(-1,2,-1),(1,-1,2):}] verify that A^(3)-6A^(2)+9A-4I=0 and hence find A^(-1) .

If A=[-1 1 0-2] , then prove that A^2+3A+2I=Odot Hence, find Ba n dC matrices of order 2 with integer elements, if A=B^3+C^3dot