Home
Class 12
MATHS
If A=[{:(8,-4),(-5,3):}], verify that A(...

If `A=[{:(8,-4),(-5,3):}]`, verify that `A(adjA)=(adjA)A=|A|I_(2)`.

Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise EXERCISE -1.2|3 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise EXERCISE -1.3|5 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise EXAMPLE QUESTIONS SOLVED|10 Videos
  • APPLICATIONS OF INTEGRATION

    FULL MARKS|Exercise ADDITIONAL PROBLEMS|35 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise Additional Questions Solved|59 Videos

Similar Questions

Explore conceptually related problems

If A= [{:(8,-4),(-5," "3):}] , verify that A(adj A)= (adj A) A= |A|I_(2) .

If A=[{:(8,-6,2),(-6,7,-4),(2,-4,3):}] verify that A(adjA)=(adjA)A=A|A|I_(3) .

Given A=[{:(1,-1,2),(3,0,-2),(1,0,3):}] verify that A(adjA)_=(adjA)A=|A|I_(3) .

Find the adjoint of the matrix A = [{:(1,2),(3,-5):}] and verify that A(adj A) = (Adj A)A = |A| I

If A=[[1,2,1],[1,1,2],[2,2,1]] verify A(adj A)=(adj A)A=|A|I_(3) .

If A=[[1,1,2],[1,2,2],[2,2,1]] verify that A(adj A) = (adj A)A = |A|I_(3) .

If A = [{:(3,2),(7,5):}] "and B" = [{:(-1,-3),(5,2):}] "verify that" (AB)^(-1)=B^(-1)A^(-1).

If A=[{:(2,-1,1),(-1,2,-1),(1,-1,2):}] verify that A^(3)-6A^(2)+9A-4I=0 and hence find A^(-1) .

If A=[{:(3,2),(7,5)],andB=[(-1,-3),(5,2):}] verify that (AB)^(-1)=B^(-1)A^(-1) .

If A=[{:(2,1),(3,4):}] , then (adjA)A………..