Home
Class 12
MATHS
Prove : 2 sin ^(-1) "" 3/5 = tan ^(-1) ...

Prove : ` 2 sin ^(-1) "" 3/5 = tan ^(-1) ""(24)/(7)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.1|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.2|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.6|20 Videos
  • DISCRETE MATHEMATICS

    FULL MARKS|Exercise Additional Question Solved|20 Videos
  • ORDINARY DIFFERENTIAL EQUATIONS

    FULL MARKS|Exercise ADDITIONAL PROBLEMS|40 Videos

Similar Questions

Explore conceptually related problems

Prove : tan ( cos^(-1) ""4/5 + tan ^(-1)"" 2/3 )=(17)/(6)

Prove : sin ^(-1) ""(5/13) + cos^(-1) (3/5) = tan^(-1) ""(63)/(16)

Evaluate sin [ sin ^(-1) (5/13) + tan^(-1) (5/12)]

Find the value of tan (sin^(-1)""(3)/(5)+cot^(-1)""(3)/(2))

Prove that : 2 tan^(-1) (1/3) +tan^(-1) (1/6) = tan^(-1) (22/21)

Prove that : tan^(-1) (1/2 ) + tan^(-1) (1/3) = pi/4

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))xx (cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

To find the sum sin^(2) ""(2pi)/(7) + sin^(2)""(4pi)/(7) +sin^(2)""(8pi)/(7) , we follow the following method. Put 7theta = 2npi , where n is any integer. Then " " sin 4 theta = sin( 2npi - 3theta) = - sin 3theta This means that sin theta takes the values 0, pm sin (2pi//7), pmsin(2pi//7), pm sin(4pi//7), and pm sin (8pi//7) . From Eq. (i), we now get " " 2 sin 2 theta cos 2theta = 4 sin^(3) theta - 3 sin theta or 4 sin theta cos theta (1-2 sin^(2) theta)= sin theta ( 4sin ^(2) theta -3) Rejecting the value sin theta =0 , we get " " 4 cos theta (1-2 sin^(2) theta ) = 4 sin ^(2) theta - 3 or 16 cos^(2) theta (1-2 sin^(2) theta)^(2) = ( 4sin ^(2) theta -3)^(2) or 16(1-sin^(2) theta) (1-4 sin^(2) theta + 4 sin ^(4) theta) " " = 16 sin ^(4) theta - 24 sin ^(2) theta +9 or " " 64 sin^(6) theta - 112 sin^(4) theta - 56 sin^(2) theta -7 =0 This is cubic in sin^(2) theta with the roots sin^(2)( 2pi//7), sin^(2) (4pi//7), and sin^(2)(8pi//7) . The sum of these roots is " " sin^(2)""(2pi)/(7) + sin^(2)""(4pi)/(7) + sin ^(2)""(8pi)/(7) = (112)/(64) = (7)/(4) . The value of (tan^(2)""(pi)/(7) + tan^(2)""(2pi)/(7) + tan^(2)""(3pi)/(7))/(cot^(2)""(pi)/(7) + cot^(2)""(2pi)/(7) + cot^(2)""(3pi)/(7)) is

Prove that 2tan^(-1)((2)/(3))=tan^(-1)((12)/(5))

FULL MARKS-INVERSE TRIGONOMETRIC FUNCTIONS-ADDITIONAL QUESTIONS SOLVED
  1. Prove : sin ^(-1) ""(5/13) + cos^(-1) (3/5) = tan^(-1) ""(63)/(16)

    Text Solution

    |

  2. Prove that tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(=-1)((2)/(9))

    Text Solution

    |

  3. Prove : 2 sin ^(-1) "" 3/5 = tan ^(-1) ""(24)/(7)

    Text Solution

    |

  4. Prove : tan ( cos^(-1) ""4/5 + tan ^(-1)"" 2/3 )=(17)/(6)

    Text Solution

    |

  5. solve for x : tan (cos^(-1) x ) = sin (cot^(-1) ""1/2)

    Text Solution

    |

  6. If sin(sin^(-1)""(1)/(5)+cos^(-1)x)=1, then find the value of x.

    Text Solution

    |

  7. IF sin^(-1) X+ sin^(-1) y+ sin^(-1) z= pi , then prove that x^4 ...

    Text Solution

    |

  8. Prove that : cos [ tan^(-1) { sin (cot^(-1) x)}]= sqrt((x^2 +1)/(...

    Text Solution

    |

  9. Find the principal value of sin^(-1) ""(1/2) and sin^(-1) ""(- 1/(...

    Text Solution

    |

  10. Find the principal value of cos^(-1)((-1)/(2))

    Text Solution

    |

  11. Evaluate tan ^(-1) 1 + cos^(-1) (-1/2) + sin^(-1) ""(-1/2)

    Text Solution

    |

  12. Evaluate : (I ) tan ^(-1) (tan"" (3pi )/(4)) (ii ) tan^(-1) "...

    Text Solution

    |

  13. Evalute : (I ) sin^(-1) ""(sin( pi/3) (ii ) cos^(-1) ( cos ""(...

    Text Solution

    |

  14. simplify : tan^(-1) ""((a cos x- b sin x )/(b cos x + a sin x ) )...

    Text Solution

    |

  15. Evaluate : tan {1/2 cos^(-1) "" (sqrt(5))/(3)}

    Text Solution

    |

  16. Solve : tan ^(-1) ""(x-1)/(x+1) + tan^(-1) ""(2x -1)/(2x+1)= tan ...

    Text Solution

    |

  17. find the values of each of the following : (i) tan^(-1) ""[ 2...

    Text Solution

    |

  18. solve for x : tan (cos^(-1) x ) = sin (cot^(-1) ""1/2)

    Text Solution

    |

  19. tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to

    Text Solution

    |

  20. Evaluate : sin (tan^(-1) x + cot^(-1) x )

    Text Solution

    |