Home
Class 12
MATHS
sec^(-1) (sqrt2) + "cot"^(-1) (1)= ……....

`sec^(-1) (sqrt2) + "cot"^(-1) (1)= ……..`

A

`(-pi )/(2)`

B

` (pi)/(2)`

C

`pi`

D

`-pi`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.1|7 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.2|8 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.6|20 Videos
  • DISCRETE MATHEMATICS

    FULL MARKS|Exercise Additional Question Solved|20 Videos
  • ORDINARY DIFFERENTIAL EQUATIONS

    FULL MARKS|Exercise ADDITIONAL PROBLEMS|40 Videos

Similar Questions

Explore conceptually related problems

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Find the principal value of (i) sin^(-1)""1/sqrt2 (ii) sin^(-1) ""-1/sqrt2 (iii) cos^(-1) ""sqrt3/2 (iv) sec^(-1) (-sqrt2) (v) tan^(-1) (sqrt3)

Show that "cosec"^(-1) (x/(sqrt(x^(2)-1))) = sec^(-1) (x) , | x | gt 1

Find the sum cot^(-1) 2 + cot^(-1) 8 + cot^(-1) 18 + ...oo

Find the principal value of (a) cosec^(-1) (-1) (b) cot^(-1) (-(1)/(sqrt3))

cos^(-1) (cos (2 cot^(-1) (sqrt2 -1))) is equal to

If y = tan^(-1)(u/sqrt(1-u^2)) and x = sec^(-1)(1/(2u^2-1)) , u in (0,1/sqrt2)uu(1/sqrt2,1) , prove that 2dy/dx+ 1 = 0 .

Solve cos ( sin^(-1)((x)/(sqrt(1+x^2))))= sin { cot^(-1) (3/4)}

Find the value of sec^2 ( cot^(-1) 3 ) + "cosec" ( tan^(-1) 2)

The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(50))/7++sec^(-1)sqrt(((n^2+1)(n^2-2n+2))/((n^2-n+1)^2)) is (a) tan^(-1)n (b) n (c) tan^(-1)(n+1) (d) tan^(-1)(n-1)