Home
Class 12
MATHS
Is cos^(-1) (-x ) = pi - cos^(-1) x ...

Is ` cos^(-1) (-x ) = pi - cos^(-1) x ` true ? Justify your answer .

Text Solution

Verified by Experts

The correct Answer is:
`pi - cos ^(-1) x= cos ^(-1) (-x)`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.3|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.4|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.1|7 Videos
  • DISCRETE MATHEMATICS

    FULL MARKS|Exercise Additional Question Solved|20 Videos
  • ORDINARY DIFFERENTIAL EQUATIONS

    FULL MARKS|Exercise ADDITIONAL PROBLEMS|40 Videos

Similar Questions

Explore conceptually related problems

Let f(x) and g(x) are two differentiable functions. If f(x)=g(x) , then show that f'(x)=g'(x) . Is the converse true ? Justify your answer

Prove that cos^(-1){(1+x)/2}=(cos^(-1)x)/2

If cos^(-1)x + cot^(-1) (1/2) = pi/2 then x is equal to

If 4cos^(-1)x+sin^(-1)x=pi, then x is

Let cos^(-1) (4x^(3) -3x) = a + b cos^(-1) x If x in [-1, -(1)/(2)) , then the value of a + b pi is

If cos^(-1) x + cos^(-1) y + cos ^(-1) z = pi and 0 lt x,y,z lt 1 show that x^(2) +y^(2) +z^(2) +2xyz = 1

Is the function f(x) = |x| differentiable at the origin. Justify your answer.

Find (I ) cos^(-1) (-1/sqrt(2)) (ii ) cos^(-1) ( cos (- pi/3)) (iii) cos^(-1) ( cos ((7 pi )/(6 )))