Home
Class 12
MATHS
Prove thate sin^(-1)((3)/(5))-cos^(-1)...

Prove thate
`sin^(-1)((3)/(5))-cos^(-1)((12)/(13))=sin^(-1)((16)/(65))`

Text Solution

Verified by Experts

The correct Answer is:
`= tan ^(-1) (1/2)`
` (16)/(65 ) = RHS.`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.6|20 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.4|2 Videos
  • DISCRETE MATHEMATICS

    FULL MARKS|Exercise Additional Question Solved|20 Videos
  • ORDINARY DIFFERENTIAL EQUATIONS

    FULL MARKS|Exercise ADDITIONAL PROBLEMS|40 Videos

Similar Questions

Explore conceptually related problems

Prove thate tan^(-1)((2)/(11))+tan^(-1)((7)/(24))=tan^(-1)((1)/(2))

Prove that cos^(-1)4/5 + cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

Evaluate sin(cos^(-1)((3)/(5)))

Show that sin^(-1) (5/13) +cot^(-1) (12/5)= sin^(-1)((120)/169)

sin{2cos^(-1)((-3)/(5))}=

Evaluate : cos[sin^(-1)""(3)/(5)+sin^(-1)""(5)/(13)]

The value of sin^(-1)((12)/(13)) - sin ^(-1)((3)/(5)) is equal to (A) pi-sin ^(-1) ((63)/(65)) (B) (pi)/(2) - sin ^(-1)((56)/(65)) (C) (pi)/(2) - cos ^(-1)((9)/(65)) (D) pi - cos ^(-1)((3)/(65))

Prove : sin ^(-1) ""(5/13) + cos^(-1) (3/5) = tan^(-1) ""(63)/(16)

sin^(-1)""(3)/(5)-cos^(-1)""(12)/(13)+sec^(-1)""(5)/(3)-cosec^(-1)(13)/(12) is equal to

Prove : 2 sin ^(-1) "" 3/5 = tan ^(-1) ""(24)/(7)