Home
Class 12
MATHS
Prove that tan^(-1)x+tan^(-1)y+tan^(-1)z...

Prove that `tan^(-1)x+tan^(-1)y+tan^(-1)z=tan^(-1)((x+y+z-xyz)/(1-xy-yz-zx))`

Text Solution

Verified by Experts

The correct Answer is:
`= tan^(-1) ((x+y +z - xyz )/( 1- xy -xz - yz ))=RHS`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.6|20 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    FULL MARKS|Exercise EXERCISE -4.4|2 Videos
  • DISCRETE MATHEMATICS

    FULL MARKS|Exercise Additional Question Solved|20 Videos
  • ORDINARY DIFFERENTIAL EQUATIONS

    FULL MARKS|Exercise ADDITIONAL PROBLEMS|40 Videos

Similar Questions

Explore conceptually related problems

Solve, tan^(-1) (x+1)+tan^(-1) (x-1)=tan^(-1)""4/7

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2)))absxlt(1)/(sqrt(3)).

Prove that 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x)=tan^(-1)x(x!=0)dot

Prove that : 2 tan^(-1) (1/3) +tan^(-1) (1/6) = tan^(-1) (22/21)

Prove that tan^(-1)((1)/(7))+tan^(-1)((1)/(13))=tan^(=-1)((2)/(9))

Prove thate tan^(-1)((2)/(11))+tan^(-1)((7)/(24))=tan^(-1)((1)/(2))

Prove that 2tan^(-1)((2)/(3))=tan^(-1)((12)/(5))

Prove that |tan^(-1)x-tan^(-1)y|lt=|x-y|AAx , y in Rdot

If tan^(-1)(3)+tan^(-1)(x)=tan^(-1)(8)," then "x=