Home
Class 12
MATHS
Find the altitude of a parallelepiped de...

Find the altitude of a parallelepiped determined by the vectors `vec(a)=-2hat(i)+5hat(j)+3hat(k)" "vec(b)=hat(i)+3hat(j)-2hat(k)andvec(c)=-3hat(i)+hat(j)+4hat(k)` if the base is taken as the parallelogram determined by `vec(b)andvec(c).`

Text Solution

Verified by Experts

The correct Answer is:
` (2sqrt3)/(5) `
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.3|8 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.4|9 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.1|14 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise ADDITIONAL QUESTIONS SOLVED|56 Videos
  • COMPLEX NUMBERS

    FULL MARKS|Exercise EXERCISE - 2.9|25 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=hat(i)+2hat(j)-5hat(k),vec(c)=3hat(i)+5hat(j)-hat(k), then a vector perpendicular to vec(a) and lies in the plane containing vec(b)andvec(c) is

If vec(a)=vec(i)+2hat(j)+3hat(k),vec(b)=2hat(i)+hat(j)-2hat(k),vec(c)=3hat(i)+hat(2j)+hat(k)," find "vec(a)*(vec(b)xxvec(c))

Find the area of the parallelogram determined by the vectors vec a = hat i + hat j + 3 hat k , vec b = 3 hat i - 4 hat j + 5 hat k .

vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=-hat(i)+2hat(j)-4hat(k),vec(c)=hat(i)+hat(j)+hat(k)" then find the of "(vec(a)xxvec(b))*(vec(a)xxvec(c)).

For vec(a)=hat(i)+hat(j)-2hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=hat(i)-2hat(j)+2hat(k) , then find the unit vector parallal to vec(a)+vec(b)+vec(c) is ...................... .

Find the volume of a parallelopiped whose edges are represented by the vectors vec a = 2 hat i -3 hat j -4 hat k and vec b = hat i +2 hat j - hat k and vec c = 3 hat i + hat j + 2 hat k .

If vec(a)=hat(i)+2hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k)andvec(c)=3hat(i)+hat(j)" find "lambda" such that "vec(a)+lambdavec(b) is perpendicular to vec(c).

The area of the parallelogram having diagonals vec(a)=3hat(i)+hat(j)-2hat(k) andvec(b)=hat(i)-3hat(j)+4k is