Home
Class 12
MATHS
Let vec(a)=hat(i)+hat(j)+hat(k),vec(b)=h...

Let `vec(a)=hat(i)+hat(j)+hat(k),vec(b)=hat(i)and vec(c)=c_(1)hat(i)+c_(2)hat(j)+c_(3)hat(k).`" If "c_(1)=1 and c_(2)=2" find "c_(3)" such that "vec(a), vec(b) and vec(c)" are coplanar. "`

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.3|8 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.4|9 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.1|14 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise ADDITIONAL QUESTIONS SOLVED|56 Videos
  • COMPLEX NUMBERS

    FULL MARKS|Exercise EXERCISE - 2.9|25 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=hat(i)+hat(i)+hat(k).vec(b)=hat(i)andvec(c)=c_(1)hat(i)+c_(2)hat(j)+c_(3)hat(k). " If "c_(1)=1andc_(2)=2" find "c_(3)" such that "vec(a),vec(b)andvec(c)" are coplanar. " depends on neither x nor y .

Let vec a = hat i + hat j + hat k , vec b = hat i and vec c = c_(1)hat i + c_(2)hat j + c_(3)hat k . If c_(1) = 1 and c_(2) = 2 , find c_(3) which makes vec a, vec b and vec c coplanar.

Let vec a = hat i + hat j + hat k , vec b = hat i and vec c = c_(1)hat i + c_(2)hat j +c_(3)hat k . Then if c_(2) = -1 and c_(3) = 1 , show that no value of c_(1) can make vec a, vec b and vec c coplanar.

If vec(a)=hat(i)+2hat(j)+3hat(k),vec(b)=-hat(i)+2hat(j)+hat(k)andvec(c)=3hat(i)+hat(j)" find "lambda" such that "vec(a)+lambdavec(b) is perpendicular to vec(c).

If vec(a)=hat(i)-2hat(j)+3hat(k),vec(b)=2hat(i)+hat(j)-2hat(k),vec(c)=3hat(i)+2hat(j)+hat(k)," find (i) "(vec(a)xxvec(b))xxvec(c)" (ii) "vec(a)xx(vec(b)xxvec(c))

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) - vec(b)

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) +vec(b)