Home
Class 12
MATHS
For any vector veca prove that hati...

For any vector ` veca ` prove that ` hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxhatk)=2veca `

Text Solution

Verified by Experts

The correct Answer is:
` 2veca `
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.4|9 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.5|7 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.2|10 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise ADDITIONAL QUESTIONS SOLVED|56 Videos
  • COMPLEX NUMBERS

    FULL MARKS|Exercise EXERCISE - 2.9|25 Videos

Similar Questions

Explore conceptually related problems

prove that (veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0

For any vector veca prove that |veca xxhati|^(2)+|vecaxxhatj|^(2)+|vecaxxhatk|^(2)=2|veca|^(2) .

For any vector veca prove that |vecaxxhati|^(2)+|vecaxxhatj|^(2)+|vecaxxhatk|^(2)=2|veca|^(2) .

for any two vectors veca and vecb , prove that abs(vecaxxvecb)^(2)+(veca.vecb)^(2)=abs(veca)^(2)abs(vecb)^(2) .

For any two vectors vec a and vec b , prove that | vec a xx vec b|^(2) = |vec a|^(2)|vec b|^(2) - (vec a . vecb)^(2) = [[veca.veca veca .vecb], [veca.vecb vec b.vecb]]

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

For any four vectors prove that (vecbxxvecc).(veca xxvecd)+(vecc xxveca).(vecbxxvecd)+(vecaxxvecb).(veccxxvecd)=0

Prove that (veca.(vecbxxvecc))veca=(vecaxxvecb)xx(vecaxxvecc) .

For any two vectors veca and vecb prove that |vecaxxvecb|^(2)+(veca*vecb)^(2)=|veca|^(2)|vecb|^(2)

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .