Home
Class 12
MATHS
Prove that [veca-vecb,vecb-vecc,vecc-v...

Prove that ` [veca-vecb,vecb-vecc,vecc-veca]=0 `

Text Solution

Verified by Experts

The correct Answer is:
0
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.4|9 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.5|7 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.2|10 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise ADDITIONAL QUESTIONS SOLVED|56 Videos
  • COMPLEX NUMBERS

    FULL MARKS|Exercise EXERCISE - 2.9|25 Videos

Similar Questions

Explore conceptually related problems

Prove that [veca+vecb vecb+vecc vecc+veca]=2[veca vecb vecc]

The vectors veca-vecb,vecb-vecc,vecc-veca are

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

If veca, vecb, vecc are unit vectors such that veca. vecb=0, (veca-vecc).(vecb+vecc)=0 and vecc=lambdaveca+muvecb+omega(veca xx vecb) , where lambda, mu, omega are scalars, then

veca , vecb and vecc are three non-coplanar vectors and vecr . Is any arbitrary vector. Prove that [vecbvecc vecr]veca+[vecc veca vecr]vecb+[vecavecbvecr]vecc=[veca vecb vecc]vecr .

If veca,vecb,vecc are unit vectors such that veca+vecb+vecc=vec0 , find the value of veca*vecb+vecb*vecc+vecc*veca .

Prove that veca\'xxvecb\'+vecb\'xxvecc\'+vecc\'xxveca\'=(veca+vecb+vecc)/([veca vecb vecc])