Home
Class 12
MATHS
If the planes vec(r)*(2hat(i)-lamdahat(j...

If the planes `vec(r)*(2hat(i)-lamdahat(j)+hat(k))=3andvec(r)(4hat(i)+hat(j)-muhat(k))=5` are parallel, then the value of `lambdaandmu` are

A

` (1)/(2),-2 `

B

` (-1)/(2),2 `

C

` (-1)/(2),-2 `

D

` (1)/(2),2 `

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise Additional Questions Solved|59 Videos
  • APPLICATIONS OF VECTOR ALGEBRA

    FULL MARKS|Exercise EXERCISE-6.9|8 Videos
  • APPLICATIONS OF MATRICES AND DETERMINANTS

    FULL MARKS|Exercise ADDITIONAL QUESTIONS SOLVED|56 Videos
  • COMPLEX NUMBERS

    FULL MARKS|Exercise EXERCISE - 2.9|25 Videos

Similar Questions

Explore conceptually related problems

For the plane vec(r).(2hat(i)+3hat(j)+5hat(k))=3

If the planes vec(r).(hat(i)+2hat(j)+3hat(k))=7andvec(r).(lambdahat(i)+2hat(j)-7hat(k))=26 are perpendicular. Find the value of lambda.

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) - vec(b)

Given vec(a) = 3 hat(i) + 2 hat(j) - hat(k) and vec(b) = hat(i) + hat(j) + 3 hat(k) Determine vec(a) +vec(b)

Show that the lines vec(r)=(6hat(i)+hat(j)+2hat(k))+s(hat(i)+2hat(j)-3hat(k)),andvec(r)=(3hat(i)+2hat(j)-2hat(k))+t(2hat(i)+4hat(j)-5hat(k)) are skew lines and hence find the shortest distance between them.

Find the altitude of a parallelepiped determined by the vectors vec(a)=-2hat(i)+5hat(j)+3hat(k)" "vec(b)=hat(i)+3hat(j)-2hat(k)andvec(c)=-3hat(i)+hat(j)+4hat(k) if the base is taken as the parallelogram determined by vec(b)andvec(c).

If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=hat(i)+2hat(j)-5hat(k),vec(c)=3hat(i)+5hat(j)-hat(k), then a vector perpendicular to vec(a) and lies in the plane containing vec(b)andvec(c) is

Find the angle between the line vec(r)=(2hat(i)-hat(j)+hat(k))+t(6hat(i)+2hat(j)-2hat(k))" and the plane "vec(r)*(6hat(i)+3hat(j)+2hat(k))=8

FULL MARKS-APPLICATIONS OF VECTOR ALGEBRA-EXERCISE-6.10(M.C.Q)
  1. The volume of the parallelepiped with its edges represented by the vec...

    Text Solution

    |

  2. If |veca|=2, |vecb|=7 and vecaxxvecb=3hati-2hatj+6hatk find the angle ...

    Text Solution

    |

  3. If veca=hati+hatj+hatk,vecb=hati+hatj, vecc= veci and (vecaxxvec...

    Text Solution

    |

  4. If veca,vecb, vecc are three non-coplanar vectors such that vecax...

    Text Solution

    |

  5. If vec(a),vec(b),vec(c) are three non-coplanar vectors such that vec(a...

    Text Solution

    |

  6. If the volume of the parallelpiped with vec(a)xxvec(b),vec(b)xxvec(c),...

    Text Solution

    |

  7. Consider the vectors, vec(a),vec(b),vec(c),vec(d) such that (vec(a)xxv...

    Text Solution

    |

  8. if (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) where veca,vecb,vecc ar...

    Text Solution

    |

  9. If vec(a)=2hat(i)+3hat(j)-hat(k),vec(b)=hat(i)+2hat(j)-5hat(k),vec(c)=...

    Text Solution

    |

  10. The angle between the lines (x-2)/(3)=(y+1)/(-2),z=2and(x-1)/(1)=(2y+3...

    Text Solution

    |

  11. If the line (x-2)/(3)=(y-1)/(-5)=(z+2)/(2)" lies in the plane "x+3y-az...

    Text Solution

    |

  12. The angle between the line vecr=(hati+2hatj-3hatk)+t(2hati+hatj-2hatk)...

    Text Solution

    |

  13. The coordinates of the point where the line vecr=(6hati-hatj-3hatk)+...

    Text Solution

    |

  14. Distance from the origin to the plane 3x - 6y + 2z + 7 = 0 is

    Text Solution

    |

  15. The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z +...

    Text Solution

    |

  16. If direction cosines of a line are (1)/(c),(1)/(c),(1)/(c)," then. "

    Text Solution

    |

  17. The vector equation vec(r)=(hat(i)-2hat(j)-hat(k))+t(6hat(j)-hat(k)) r...

    Text Solution

    |

  18. If the distance of the point (1,1,1) from the origin is half of its di...

    Text Solution

    |

  19. If the planes vec(r)*(2hat(i)-lamdahat(j)+hat(k))=3andvec(r)(4hat(i)+h...

    Text Solution

    |

  20. If the length of the perpendicular from the origin to the plane 2x+3y+...

    Text Solution

    |