Home
Class 12
MATHS
If V(x,y) = e^(x) (x cos y - y siny), th...

If `V(x,y) = e^(x) (x cos y - y siny)`, then prove that `(del^(2)V)/(del x^(2)) + (del^(2) V)/(del y^(2)) =0`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    FULL MARKS|Exercise EXERCISE - 8.5|5 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    FULL MARKS|Exercise EXERCISE - 8.6|8 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    FULL MARKS|Exercise EXERCISE - 8.3|7 Videos
  • COMPLEX NUMBERS

    FULL MARKS|Exercise EXERCISE - 2.9|25 Videos
  • DISCRETE MATHEMATICS

    FULL MARKS|Exercise Additional Question Solved|20 Videos

Similar Questions

Explore conceptually related problems

If w(x,y) = xy + sin(xy) , then prove that (del^(2) w)/(del y del x) = (del^(2) w)/(del x del y)

If u=log sqrt(x^(2) + y^(2)) , then (del^(2) u)/(del x^(2)) + (del^(2)u)/(del y^(2)) is

If u =x ^(2) + y ^(2) evaluate (del^(2)f)/(del x ^(2)) + (del ^(2) f)/(dy ^(2)):

If y= A sin x+ B cos x , then prove that (d^(2)y)/(dx^(2))+y=0 .

If y= 5 cos x-3 sin x , prove that (d^(2)y)/(dx^(2))+y=0 .

A function f (x,y) is said to be harmonic if (del^(2)f)/(del x ^(2)) + (del^(2)f)/(dely^(2)) =

If v(x,y,z) = x^(3) + y^(3) + z^(3) + 3xyz , show that (del^(2)v)/(del y del z) = (del^(2)v)/(del z del y)

If z=f(x-cy) + F(x+cy) where f and F are any two functions and c is a constant, show that c^(2) (del^(2)z)/(del x^(2)) = (del^(2)z)/(del y^(2)) .

If f=x/(x^(2) + y^(2)) , then show that x (del f)/(del x) + y(del f)/(del y) =-f .

If u = cos ^(-1) ((x)/(y)) prove that x (del u)/(delx) + y (del u)/(dely)=0.