Home
Class 12
MATHS
If z(x,y) =x tan^(-1)(xy), x=t^(2), y=se...

If z(x,y) `=x tan^(-1)(xy), x=t^(2), y=se^(t), s, t in R`, Find `(del z)/(del s)` and `(del z)/(del t)` at s=t=1.

Text Solution

Verified by Experts

The correct Answer is:
`(3e)/(1+e^2)+2 tan^(-1)e`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    FULL MARKS|Exercise EXERCISE - 8.7|6 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    FULL MARKS|Exercise Additional Questions Solved|29 Videos
  • DIFFERENTIALS AND PARTIAL DERIVATIVES

    FULL MARKS|Exercise EXERCISE - 8.5|5 Videos
  • COMPLEX NUMBERS

    FULL MARKS|Exercise EXERCISE - 2.9|25 Videos
  • DISCRETE MATHEMATICS

    FULL MARKS|Exercise Additional Question Solved|20 Videos

Similar Questions

Explore conceptually related problems

Let z(x,y) =x^(3) - 3x^(2)y^(3) , where x = se^(t), y =se^(-t), s, t in R . Find (del z)/(del s) and (del z)/(del t)

Let z(x,y)=xe^(y)+ye^(-x),x=e^(-t),y=st^(2),s,tinRR . Find (delz)/(dels)and(delz)/(delt) .

Let U(x,y) =e^(x) sin y , where x=st^(2), y =s^(2) t, s, t in R . Find (del U)/(del S), (del U)/(del t) and evaluate them at s=t=1.

Let U(x,y,z) = xyz, x=e^(-t), y=e^(-t) cos t, z= sin t, t in R . Find (dU)/(dt) .