Home
Class 9
MATHS
If the mean of the following data is 26,...

If the mean of the following data is 26, then find the missing frequency x.
`{:("Class Interval",f),(" "0-10,4),(" "10-20,X),(" "20-30,9),(" "30-40,5),(" "40-50,6):}`

Text Solution

AI Generated Solution

The correct Answer is:
To find the missing frequency \( x \) in the given data where the mean is 26, we can follow these steps: ### Step 1: Identify the Class Intervals and Frequencies We have the following class intervals and frequencies: - Class Interval: 0-10, Frequency: 4 - Class Interval: 10-20, Frequency: \( x \) - Class Interval: 20-30, Frequency: 9 - Class Interval: 30-40, Frequency: 5 - Class Interval: 40-50, Frequency: 6 ### Step 2: Calculate the Class Marks The class mark \( X_i \) for each class interval can be calculated using the formula: \[ X_i = \frac{\text{Lower Limit} + \text{Upper Limit}}{2} \] Calculating the class marks: - For 0-10: \( X_1 = \frac{0 + 10}{2} = 5 \) - For 10-20: \( X_2 = \frac{10 + 20}{2} = 15 \) - For 20-30: \( X_3 = \frac{20 + 30}{2} = 25 \) - For 30-40: \( X_4 = \frac{30 + 40}{2} = 35 \) - For 40-50: \( X_5 = \frac{40 + 50}{2} = 45 \) ### Step 3: Set Up the Frequency Table Now we can set up the frequency table with class marks and frequencies: \[ \begin{array}{|c|c|c|} \hline \text{Class Interval} & f_i & X_i \\ \hline 0-10 & 4 & 5 \\ 10-20 & x & 15 \\ 20-30 & 9 & 25 \\ 30-40 & 5 & 35 \\ 40-50 & 6 & 45 \\ \hline \end{array} \] ### Step 4: Calculate \( \Sigma f_i \) and \( \Sigma f_i X_i \) - \( \Sigma f_i = 4 + x + 9 + 5 + 6 = 24 + x \) - Now calculate \( \Sigma f_i X_i \): - For 0-10: \( 4 \times 5 = 20 \) - For 10-20: \( x \times 15 = 15x \) - For 20-30: \( 9 \times 25 = 225 \) - For 30-40: \( 5 \times 35 = 175 \) - For 40-50: \( 6 \times 45 = 270 \) Thus, \[ \Sigma f_i X_i = 20 + 15x + 225 + 175 + 270 = 690 + 15x \] ### Step 5: Use the Mean Formula The mean is given by: \[ \text{Mean} = \frac{\Sigma f_i X_i}{\Sigma f_i} \] Substituting the values we have: \[ 26 = \frac{690 + 15x}{24 + x} \] ### Step 6: Cross Multiply and Solve for \( x \) Cross multiplying gives: \[ 26(24 + x) = 690 + 15x \] Expanding both sides: \[ 624 + 26x = 690 + 15x \] Rearranging gives: \[ 26x - 15x = 690 - 624 \] \[ 11x = 66 \] Dividing by 11: \[ x = 6 \] ### Conclusion The missing frequency \( x \) is 6. ---
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    PEARSON IIT JEE FOUNDATION|Exercise ESSAY TYPE QUESTION|5 Videos
  • STATISTICS

    PEARSON IIT JEE FOUNDATION|Exercise LEVEL-1|30 Videos
  • STATISTICS

    PEARSON IIT JEE FOUNDATION|Exercise VERY SHORT ANSWER TYPE QUESTIONS|30 Videos
  • SIMPLE INTEREST AND COMPOUND INTEREST

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION|1 Videos
  • TRIGONOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Level 3|15 Videos

Similar Questions

Explore conceptually related problems

Find the median of the following data. {:("Class Interval",f),(" "0-10,12),(" "10-20,13),(" "20-30,25),(" "30-40,20),(" "40-50,10):}

The median of the following frequency distribution is {:("Class interval",f),(" "0-10,5),(" "10-20,8),(" "20-30,7),(" "30-40,10),(" "40-50,20):}

Find the mean of the following continuous distribution. {("Class Interval",f),(" "0-10,8),(" "10-20,4),(" "20-30,6),(" "30-40,3),(" "40-50,4):}

Find the mode for the following data. {:("Class Interval",f),(" "0-9,2),(" "10-19,4),(" "20-29,7),(" "30-39,5),(" "40-49,3):}

Find the approximate value of mean deviation about the mode of the following data. {:("Class Interval",f),(" "0-10,4),(" "10-20,6),(" "20-30,3),(" "30-40,9),(" "40-50,5):}

The mean of the following data is {("Class interval",f),(" "10-15,5),(" "15-20,7),(" "20-25,3),(" "25-30,4),(" "30-35,8):}

If the median of the following data is 32.5, find the missing frequencies. Class interval: 0-10 10-20 20-30 30-40 40-50 50-60 60-70 Total Frequency: f_1 5 9 12 f_2 3 2 40

Draw the frequency polygon for the following data by drawing a histogram: {:("Class Interval",f),(" "0-5,10),(" "5-10,20),(" "10-15,15),(" "15-20,30),(" "20-25,32),(" "25-30,44):}

If the median of the following frequency distribution is 28.5 find the missing frequencies: Class interval: 0-10 10-20 20-30 30-40 40-50 50-60 Total Frequency: 5 f_1 20 15 f_2 5 60