Home
Class 12
MATHS
lim(x rarr oo)int(0)^(x)xe^(t^(2)-x^(2))...

lim_(x rarr oo)int_(0)^(x)xe^(t^(2)-x^(2))dt

Promotional Banner

Similar Questions

Explore conceptually related problems

The limit lim_(x rarr oo)x^(2)int_(0)^(x)e^(t^(3))-x^(3)dt equals

The value of lim_(x rarr oo)((int_(0)^(x+y)e^(t^(2))dt)^(2))/(int_(0)^(x+y)e^(2t^(2))dt) is equal to (i)0(ii)1 (iii) lim_(x rarr0)((int_(0)^(x)cos t^(2))/(x))-1(iv)-1

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

(lim_(x rarr oo)int_(0)^(x)(tan^(-1)t)^(2)dt)/( (d) (pi^(2))/(4)) has the value zero (b) (pi)/(4)(c)1

lim_(xrarr oo) (int_(0) ^(2x)xe^(x^(2))dx)/(e^4x^2)

lim_(xrarr oo) (int_(0) ^(2x)xe^(x^(2))dx)/(e^(4x^2))

The value of lim_(x rarr0)(int_(0)^(x) xe^(t^(2))dt)/(1+x-e^(x)) is equal to

lim_(x rarr oo) (int_(0)^(2x) xe^(2)dx)/(e^(4x^(2))) equals :