Home
Class 12
MATHS
[" Let "(d)/(dx)F(x)=((e^(sin x))/(x)),x...

[" Let "(d)/(dx)F(x)=((e^(sin x))/(x)),x>0." If "int_(1)^(4)(3)/(x)e^(tr x^(2))dx=],[F(k)-F(A)," then one of the possible values of "],[k," is- "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let (d)/(dx)F(x)=((e^( sin x))/(x)),x>0. If int_(1)^(4)(3)/(x)e^(sin(x^(3)))dx=F(k)-F(1), then one of the possible values of k, is: (a)15 (b) 16(cc)63 (d) 64

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -

Let (d)/(dx) F(x)=(e^(sin x))/(x), x gt 0 , If int_(1)^(4) (3)/(x) e^(sin x^(3))dx=F(k)-F(1) , then one of the possible value of k is -

Let (d)/(dx) f(x) = (e^(sin x))/(x) , x gt 0 . If int_(1)^(4) 3/x e^(sin(x^(3)))dx=F(k)-F(1) then one of the possible value of k is

Let d/(dx) F(x) = ((e^(sin x))/(x)) , x > 0 . If int_1^4 3/x e^(sin x^3) dx = F(k) - F(1) , then one of the possible values of k is :

(d)/(dx) F(x) = (e^(sin x))/(x) , x gt 0 . If int_(1)^(4) (2e^(sin x^(2)))/(x) dx=F(K)-F(1) , then one of the possible values of K is :