Home
Class 12
MATHS
ff(x)=lim(h rarr)((x+h)^(2(x+4))-x^(2y))...

ff(x)=lim_(h rarr)((x+h)^(2(x+4))-x^(2y))/(h)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(h rarr0)(e^((x+h)^(2))-e^(x^(2)))/(h)

lim_(h rarr0)((x+h)^(x+h)-x^(x))/(h)=

D*f(x)=lim_(h rarr0)(f^(2)(x+h)-f^(2)(x))/(h) If f(x)=x ln x then D*f(x) at x=e equals

Let the derivative of f(x) be defined as D*f(x)=lim_(h rarr0)(f^(2)(x+h)-f^(2)(x))/(h) where f^(2)(x)=(f(x))^(2) if u=f(x),v=g(x), then the value of D*{u.v} is

Evaluate: lim_(h rarr 0) (e^((x+h)^(2))-e^(x^(2)))/(h)

lim_(h rarr0)(sin^(2)(x+h)-sin^(2)x)/(h)

If f is a differentiable function of x, then lim_(h rarr0)([f(x+n)]^(2)-[f(x)]^(2))/(2h)

lim_(h rarr0)((x+h)^((1)/(n))-x^((1)/(n)))/(h)

The value of lim_(h to 0) (e^((x+h)^(2))-e^(x^(2)))/(h) is -

If f(x) is a differentiable function of x then lim_(h rarr0)(f(x+3h)-f(x-2h))/(h)=