Home
Class 9
MATHS
" If "(x-(1)/(x))=6," find the value of ...

" If "(x-(1)/(x))=6," find the value of "(x^(2)+(1)/(x^(2)))" and "(x^(4)+(1)/(x^(4)))

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x-(1)/(x))=4 , find the value of (i)(x^(2)+(1)/(x^(2))), (ii)(x^(4)+(1)/(x^(4)))

If x-(1)/(x)=3, find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))

If x+(1)/(x)=sqrt(5), find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))

If x + (1)/(x) = 5 find the values of (i) x^(2) + (1)/(x^(2)) and (ii) x^(4) + (1)/(x^(4))

If (x^(2)-1)/(x)=4 then find the value of (x^(6)-1)/(x^(3))

If (x - 1/x) = 4 , find the value of (i) (x^(2) - 1/(x^(2))) , (ii) (x^(4) + 1/(x^(4))).

If x-1/x=5 , find the value x^(2)+1/(x^(2)) and x^(4)+1/(x^(4))

if x-(1)/(x)=2, then the value of x^(4)+(1)/(x^(4)) is

If x^(2)+(1)/(x^(2))=6 then find the value of x^(4)+(1)/(x^(4))