Home
Class 12
MATHS
y=x^(2)+4x+1" at "x=3...

y=x^(2)+4x+1" at "x=3

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the equation of the tangent and the normal to the curve y = x^(2) + 4x + 1 at the point where x = 3

If (x_(1) , y_(1)) " and " (x_(2), y_(2)) are ends of a focal chord of parabola 3y^(2) = 4x , " then " x_(1) x_(2) + y_(1) y_(2) =

Find (dy)/(dx) , when (i) y= sqrtx (ii) y= x^(5) + x^(4) + 7 (iii) y=x^(2)+ 4x^(-1//2)- 3x^(-2)

If y=(x+(1)/(x)) , then the expression x^(4) +x^(3) -4x^(2) +x +1=0 can be simplified in terms of y as

Find (dy)/(dx) , when y=x^(2)+4x^(-1//2)-3x^(-2)

Find (dy)/(dx), when (i) y=sqrt(x) (ii) y=x^(5)+x^(4)+7 (iii) y=x^(2)+4x^(-1//2)-3x^(-2)

Find (dy)/(dx), when (i) y=sqrt(x) (ii) y=x^(5)+x^(4)+7 (iii) y=x^(2)+4x^(-1//2)-3x^(-2)

Find (dy)/(dx), when (i) y=sqrt(x) (ii) y=x^(5)+x^(4)+7 (iii) y=x^(2)+4x^(-1//2)-3x^(-2)