Home
Class 8
MATHS
Divide: 5z^3-6z^2+7z\ \ by 2z sqrt(3)\...

Divide: `5z^3-6z^2+7z\ \ ` by `2z` `sqrt(3)\ a^4+\ 2sqrt(3)\ a^3+3a^2-6a\ ` by `3a`

Promotional Banner

Similar Questions

Explore conceptually related problems

Divide: 5z^3-6z^2+7z\ \ by 2z (ii) sqrt(3)\ a^4+\ 2sqrt(3)\ a^3+3a^2-6a\ by 3a

Divide: 5z^(3)-6z^(2)+7z by 2zsqrt(3)a^(4)+2sqrt(3)a^(3)+3a^(2)-6a by 3a

If z(2-2sqrt(3i))^2=i(sqrt(3)+i)^4, then a r g(z)=

Divide: 5x^3-15 x^2+25 x\ b y\ 5x 4z^3+6z^2-z\ b y-1/2z

If z(2-2 sqrt(3) i)^(2)=i(sqrt(3)+i)^(4) then arg z=

If z(2-2sqrt(3i))^(2)=i(sqrt(3)+i)^(4), then arg(z)=

If z (2- 2 sqrt3i)^(2)= i(sqrt3+i)^(4) , then arg(z)=

If z = i(i + sqrt(2)) , then value of z^(4) + 4z^(3) + 6z^(2) + 4z is

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals to : a) 3sqrt(3) b) sqrt(3) c) 3 d) 1/(3sqrt(3))

If z(2-i2sqrt(3))^(2)=i(sqrt(3)+i)^(4), then amplitude of z is