Home
Class 12
MATHS
=sqrt(a^(sin^(-1)r))*y=sqrt(a^(cos^(-1)t...

=sqrt(a^(sin^(-1)r))*y=sqrt(a^(cos^(-1)t))," show that "(dy)/(d)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sqrt(a^(sin^(-1))t),y=sqrt(a^(cos^(-1)t)) show that (dy)/(dx)=-(y)/(x)

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^(sin^(-1)t)), y=sqrt(a^(cos^(-1)t)) , Show that (dy)/(dx)=-y/x .

If x=sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x) .

If x=sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x) .

If x=sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x) .

If x = sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x)

If x=sqrt(a^sin^((-1)t)), y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^sin^((-1)t)), y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x

If x=sqrt(a^sin^(-1t) , y=sqrt(a^cos^((-1)t)) , show that (dy)/(dx)=-y/x