Home
Class 12
MATHS
int(1)^(2)(1)/(x^(2))e^((-1)/(x))dx=...

int_(1)^(2)(1)/(x^(2))e^((-1)/(x))dx=

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(2)((x^(2)-1)/(x^(2)))e^(x+(1)/(x))dx=e^((5)/(2))-e^(2)

int(1+x+x^(2))/(1+x^(2))e^(tan^(-1)x)dx=

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

int_(1)^(2)((1)/(x)-(1)/(x^(2)))e^(x)dx=e((e)/(2)-1)

If A=int_(0)^(1)(e^(x))/(x+1)dx then int_(0)^(1)(x^(2)e^(x))/(x+1)dx=

int_(1)^(2)(1/x - 1/(2x^2))e^(2x) dx .

int_(1)^(2)(1/(x)-(1)/(2x^(2)))e^(2x)dx

int_(1)^(4)(1+x+e^(2x))dx

int_(1)^(2)(e^(1//x))/(x^(2))dx

int_(-1)^(1)e^(2x)dx