Home
Class 11
MATHS
" (iii) "(x+(1)/(x))^(2n)-4" त्र तिछ्रिछ...

" (iii) "(x+(1)/(x))^(2n)-4" त्र तिछ्रिछिण "n" -ठ्य "

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement-1: The middle term of (x+(1)/(x))^(2n) can exceed ((2n)^(n))/(n!) for some value of x. Statement-2: The coefficient of x^(n) in the expansion of (1-2x+3x^(2)-4x^(3)+ . . .)^(-n) is (1*3*5 . . .(2n-1))/(n!)*2^(n) . Statement-3: The coefficient of x^(5) in (1+2x+3x^(2)+ . . .)^(-3//2) is 2.1.

Statement-1: The middle term of (x+(1)/(x))^(2n) can exceed ((2n)^(n))/(n!) for some value of x. Statement-2: The coefficient of x^(n) in the expansion of (1-2x+3x^(2)-4x^(3)+ . . .)^(-n) is (1*3*5 . . .(2n-1))/(n!)*2^(n) . Statement-3: The coefficient of x^(5) in (1+2x+3x^(2)+ . . .)^(-3//2) is 2.1.

The set (0,2,6,12,20) in the set-builder form is (1) {x:x=n^(2)-3n+2," where "n'" is a natural number "&1 (2) {x:x=n^(2)-3n+2," where "'n'" is a natural number "&1 (3) {x:x=n^(2)-3n+4," where "'n'" is a natural number "&1 (4) {x:x=n^(2)+5n-6," where 'n' is a natural number "&1<=n<=5}

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) *""^(2n)C_(n) - C_(1) *""^(2n-2)C_(n) + C_(2) *""^(2n-4) C_(n) -…= 2^(n)

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

If x_1, x_2, x_3,...... x _(2n) are in A.P , then sum _(r=1)^(2n) (-1)^(r+1) x_r^2 is equal to (a) (n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2)) (b) (2n)/((2n-1))(x _(1)^(2) -x _(2n) ^(2)) (c) (n)/((n-1))(x _(1)^(2) -x _(2n) ^(2)) (d) (n)/((2n+1))(x _(1)^(2) -x _(2n) ^(2))

if (x-(5)/(2))^(2n)(x-2)^(2n-1)(x-1)^(4n)<=0 find x which opt is correct