Home
Class 9
MATHS
" 8.The inverse of "f(x)=[4-(x-7)^(3)]^(...

" 8.The inverse of "f(x)=[4-(x-7)^(3)]^((1)/(5))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[4-(x-7)^(3)] ,then f^(-1)(x) is

If f(x) = [4-(x-7)^(3)], then f^(-1)(x)= ………… .

If f(x) = [4-(x-7)^(3)], then f^(-1)(x)= ………… .

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: f(x)=(4-(x-7)^(3))^(1//5)

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: f(x)=(4-(x-7)^(3))^(1//5)

If f(x)=-4-(x-7)^(3), write f^(-1)(x)

If f(x)=(4-(x-7)^(3))^(1/5) , then f^(-1)(x)=

If f(x) = [4-(x-7)^(3) ] , then f^(-1)(x) = .........

Find the inverse function of the function f(x) = [4 - (x - 7)^3]^(1/5) .