Home
Class 12
MATHS
If x^y = e^(x-y), dy/dx=...

If `x^y = e^(x-y), dy/dx=`

A

`(logx)/((1+logx)^2)`

B

`(x-y)/(1 + logx)`

C

`(1-x)/(y + x logy)`

D

`-(logx)/((1 + logx)^2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 1

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos
  • MODEL TEST PAPER - 8

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

If xy = x + y , dy/dx =

If x^(y) = e^(x-y) then (dy)/(dx) is equal to

If y = x(e^(x)) then dy/dx =

If y = 2^(-x) then dy/dx =

If y = x^x,dy/dx =

IF x^(y)=e^(x-y), then (dy)/(dx) is

If x^(y) = e^(x - y) prove that (dy)/(dx) = (log_(e)x)/((1 + log_(e)x)^(2)) .

If y = e^(x^(x)) then dy/dx =

If y = e^(x^(e)) then dy/dx =