Home
Class 12
MATHS
Lt(n to 0)x/(sqrt(1 + x)-sqrt(1-x)) =...

`Lt_(n to 0)x/(sqrt(1 + x)-sqrt(1-x)) =`

A

1

B

2

C

`1/2`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER - 1

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos
  • MODEL TEST PAPER - 8

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

{:(" "Lt),(x rarr 0):} [(x)/(sqrt(1+x)-sqrt(1-x))] =

Evaluate Lt_(x to 0) (sqrt(1 + x) - 1)/(x) .

lim_(x rarr 0) (sqrt(1+x) - sqrt(1-x)/x =

If int_0^1 (dx)/(sqrt(1 + x) - sqrt(x)) =(ksqrt(2))/(3) , then k is :

lim_(x rarr 0) (sin x)/(sqrt(x + 1) - sqrt(1-x)) is :

(d)/(dx) [ 2 cot^(-1) ((sqrt(1+ sin x) + sqrt(1-sin x))/(sqrt(1+ sin x) - sqrt(1-sin x)))]=

int_0^(1) sqrt(x(1-x)) dx=

lim_(x rarr 0) (sqrt (1+x^(2)) - sqrt(1-x^(2)))/x =

Let f(x) = {{:((sqrt(1+ax)-sqrt(1-ax))/(x),,-1 le x lt 0),((2x + 1)/(x-2),,0 le x le 1):} is continuous in [-1, 1]. Then a equals :