Home
Class 12
MATHS
The length of the latus - rectum of the ...

The length of the latus - rectum of the ellipse `(x^(2))/(25) + (y^(2))/(9) = 1` is

A

`(9)/(5)`

B

`(18)/(5)`

C

`(50)/(3)`

D

`(25)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • MODEL TEST PAPER 6

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos
  • SOLVED PAPER 04

    KCET PREVIOUS YEAR PAPERS|Exercise MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(25)+(y^(2))/(100)=1

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(16)+(y^(2))/(9)=1

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(4)+(y^(2))/(25)=1

The length of the latus-rectumof the ellipse x^2/25+y^2/9 =1 is

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(36)+(y^(2))/(16)=1

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(49)+(y^(2))/(36)=1

The length of the latus rectum of the ellipse 3 x^(2)+4y^(2)=12 is

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse. (x^(2))/(100)+(y^(2))/(400)=1

Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse (x^(2))/(25)+(y^(2))/(9)=1

The length of the latus rectum of the ellipse 49 x^(2)+64 y^(2)=3136

KCET PREVIOUS YEAR PAPERS-MODEL TEST PAPER 9-Mathematics
  1. The equation to the parabola with focus (2, 0) and the directrix x + 3...

    Text Solution

    |

  2. If 2y = 5x + k is a tangent to the parabola y^(2) = 6x then k =

    Text Solution

    |

  3. The length of the latus - rectum of the ellipse (x^(2))/(25) + (y^(2))...

    Text Solution

    |

  4. P is any point on the ellipse 9x^(2) + 36y^(2) = 324 whose foci are S ...

    Text Solution

    |

  5. The product of the perpendiculars from the foci on any tangent to the ...

    Text Solution

    |

  6. int(e^(sqrt(x)))/(sqrt(x)) dx =

    Text Solution

    |

  7. underset(0)overset(a)int sqrt(a^(2) - x^(2)) dx =

    Text Solution

    |

  8. int(0)^(pi//2)(dx)/(a^(2)cos^(2)x + b^(2) sin^(2) x) =

    Text Solution

    |

  9. int(0)^(pi//2) log sin x dx =

    Text Solution

    |

  10. {:(Lt),(n->oo):}[(1)/(n+1) + (1)/(n+2) + … "to n terms"] =

    Text Solution

    |

  11. The area enclosed within the curve |x|+|y| = 1 is

    Text Solution

    |

  12. int(x^(2) + 1)/(x^(4) + 1) dx =

    Text Solution

    |

  13. If the position vectors of vec(A) and vec(B) are 3hat(i) - 2hat(j) + h...

    Text Solution

    |

  14. If a = I + j, b = j + k and c = k +i, a unit vector parallel to a + b...

    Text Solution

    |

  15. If |vec(a) + vec(b)| = |vec(a) - vec(b)| then

    Text Solution

    |

  16. If |vec(a)| = 5, |vec(b)| = 6 and the angle between vec(a) and vec(b) ...

    Text Solution

    |

  17. If |vec(a)| = 3, |vec(b) = 4 and |vec(a) + vec(b)| = 1, then |vec(a) -...

    Text Solution

    |

  18. {:(" "Lt),(x rarr 0):} [(x)/(sqrt(1+x)-sqrt(1-x))] =

    Text Solution

    |

  19. If y = sin x^(0), (dy)/(dx) =

    Text Solution

    |

  20. If y = tan^(-1)((x+a)/(1-xa)) then (dy)/(dx) =

    Text Solution

    |