Home
Class 6
MATHS
let f(x)=|[cosx,x,1],[2sinx,x^2,2x],[tan...

let `f(x)=|[cosx,x,1],[2sinx,x^2,2x],[tanx,x,1]|`. then `lim_(x->0)(f'(x))/x=`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=|[cosx,x,1],[2sinx,x^2,2x],[tanx,x,1]| . Then value of lim_(x->0)(f'(x))/x is equal to

f(x)=|[cosx,x,1],[2sinx,x^2,2x],[tanx,x,1]| . Then value of lim_(x->0)(f(x))/x is equal to

Let f(x)=|[cosx, x, 1], [2sinx ,x,2x],[sinx, x, x]| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

If f(x)=|(cosx, x,1),(2sinx,x^(2),2x),(tanx,x,1)| then Lt_(xto0)(f'(x))/x=

Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim_(xto0)(f(x))/(x^(2)) is given by

Let f(x)=|[cosx , x , x] , [2sinx , x , 2x] , [sinx , x , x]|, then lim_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

Let f(x)=|cosx x 1 2sinx x2xsinx x x| , then (lim)_(x->0)(f(x))/(x^2) is equal to (a) 0 (b) -1 (c) 2 (d) 3

If f(x)=|{:(sin x,cosx,tanx),(x^3,x^2,x),(2x,1,1):}| then lim_(xrarr0)(f(x))/(x^2) is

if f(x)=|[x,cosx,e^(x^2)],[sinx,x^2,secx],[tanx,1,2]| then the value of int_((-pi)/2)^(pi/2) f(x)dx is equal to