Home
Class 12
MATHS
The straight line y = m(x - a) will mee...

The straight line `y = m(x - a)` will meet the parabola `y^2 = 4ax` in two distinct real points if (A) `m inR` (B) `m in[-1,1]` (C) `m in(-oo,1]uu[1,oo)` (D) `m inR-{0}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the straight line y=my+1 be the tangent of the parabola y^2=4x at the point (1,2), then the value of m will be

If the straight line y=mx+1 be the tangent of the parabola y^(2)=4x at the point (1,2) then the value of m will be-

If the line y=mx-(m-1) cuts the circle x^(2)+y^(2)=4 at two real and distinct points then

If the line y = mx - (m-1) cuts the circle x^2+y^2=4 at two real and distinct points then total values of m are

The line y=mx+1 is a tangent to the parabola y^2 = 4x if (A) m=1 (B) m=2 (C) m=4 (D) m=3

The line y=mx+1 is a tangent to the parabola y^2 = 4x if (A) m=1 (B) m=2 (C) m=4 (D) m=3

If y+b=m_1(x+a)& y+b=m_2(x+a) are two tangents to the parabola y^2=4ax then |m_1m_2| is equal to: