Home
Class 11
MATHS
Positive numbers x, y and z satisfy xy...

Positive numbers `x, y and z` satisfy `xyz = 10^81 and (log_10 x) (log_10 yz) + (log_10 y) (log_10 z) = 468`.Find the value of `(log_10 x)^2 + (log_10 y)^2 + (log_10 z)^2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Positive numbers x,y backslash and backslash z satisfy xyz:)=(:10^(1) and (log_(10)x)*(log_(10)yz)+(log_(10)y)*(log_(10)z)=468. Find the value of (log_(10)x)^(2)+(log_(10)y)^(2)+(log_(10)z)^(2)

Find the value of x in (log.2)(log_(x)625)=(log_(10)16)(log10)

Given that log_10 2=.3010 , log_10 3=.4771 ,find the value of log_10 12

If the positive numbers x,y&z satisfy xyz=1000,log_(10)x log_(10)y+log_(10)xy log_(10)z=1 and log_(x)10+log_(y)10+log_(z)10=(1)/(3) then the value of root(3)((log_(10)x)^(3)+(log_(10)y)^(3)+(log_(10)z)^(3)) is

Given that log_10 2 =x, log_10 3 =y then log_10 1.2=

Given that log_10 2=.3010 , log_10 3=.4771 ,then find the value of log_10 3.6

[log_10⁡(x)]^2 − log_10⁡(x^3) + 2=0

Find the domain of the function f(x)=log_10((log_10 x^2)-5log_10 x+6)