Home
Class 12
MATHS
If y=e^x(sin x+cosx) prove that (d^2y)...

If `y=e^x(sin x+cosx)` prove that `(d^2y)/(dx^2)-2 (dy)/(dx)+2y=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^x(sinx+cosx) prove that (d^2y)/(dx^2)-2(dy)/(dx)+2y=0 .

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If y = e^x (sinx + cosx) , prove that (d^2y)/(dx^2)- 2(dy)/(dx) + 2y = 0

If y=e^x(sinx+cosx) , then prove that, (d^2y)/(dx^2)-2dy/dx+2y=0

If y=e^(x)sinx , then prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 ,

If y=e^(x)sinx, prove that (D^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0 .

If y= cot x, prove that (d^(2)y)/(dx^(2)) + 2y (dy)/(dx)= 0.

If y = e^(x) (sin x + cos x ) , prove that (d^(2) y)/( dx^(2)) - 2 (dy)/( dx) + 2 y = 0