Home
Class 10
MATHS
In figure, if DeltaA B E~=DeltaA C D, sh...

In figure, if `DeltaA B E~=DeltaA C D`, show that `DeltaA D E~ DeltaA B C`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Delta A B C a n d Delta A B D are on a common base A B , a n d A C = B D a n d B C = A D as shown in Fig. 18. Which of the following statements is true? DeltaA B C~=DeltaA B D DeltaA B C~=DeltaA D B DeltaA B C~=DeltaB A D

Delta\ A B C\ a n d\ Delta\ A B D are on a common base A B ,\ a n d\ A C\ =\ B D\ a n d\ B C\ =\ A D as shown in Fig. 18. Which of the following statements is true? DeltaA B C~=DeltaA B D DeltaA B C~=DeltaA D B DeltaA B C~=DeltaB A D

In figure Cm and RN are respectively the medians of DeltaA B C and DeltaP Q R . If DeltaA B C ~DeltaP Q R , prove that: (i) DeltaA M C ~DeltaP N R (ii) (C M)/(R N)=(A B)/(P Q) (ii) DeltaC M B ~DeltaR N Q

In figure Cm and RN are respectively the medians of DeltaA B C and DeltaP Q R . If DeltaA B C ~DeltaP Q R , prove that: (i) DeltaA M C ~DeltaP N R (ii) (C M)/(R N)=(A B)/(P Q) (ii) DeltaC M B ~DeltaR N Q

In Figure altitudes AD and CE of A B C intersect each other at the point P. Show that:(i) DeltaA E P~ DeltaC D P (ii) DeltaA B D ~DeltaC B E (iii) DeltaA E P~ DeltaA D B (iv) DeltaP D C ~DeltaB E C

In Figure altitudes AD and CE of DABC intersect each other at the point P. Show that:(i) DeltaA E P~ DeltaC D P (ii) DeltaA B D ~DeltaC B E (iii) DeltaA E P~ DeltaA D B (iv) DeltaP D C ~DeltaB E C

DeltaA B C and DeltaD B C are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig. 7.39). If AD is extended to intersect BC at P, show that (i) \ DeltaA B D~=DeltaA C D (ii) DeltaA B P~=DeltaACP (iii) AP bisects ∠ A as well as ∠ D (iv) AP is the perpendicular bisector of BC

DeltaA B C and DeltaD B C are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig. 7.39). If AD is extended to intersect BC at P, show that (i) \ DeltaA B D~=DeltaA C D (ii) DeltaA B P~=DeltaACP (iii) AP bisects ∠ A as well as ∠ D (iv) AP is the perpendicular bisector of BC

Two sides AB and BC and median AM of one triangle ABC are respectively equal to side PQ and QR and median PN of DeltaA B C~=DeltaP Q R (see Fig. 7.40). Show that: (i) DeltaA B M~=DeltaP Q N (ii) DeltaA B C~=DeltaP Q R

In figure.20, DeltaA B C is isosceles with A B=A Cdot State if DeltaA B C~=DeltaA C Bdot If yes, state three relations that you use to arrive at your answer.