Home
Class 12
MATHS
Prove that sum(r=0)^ssum(s=1)^n^n Cs^n C...

Prove that `sum_(r=0)^ssum_(s=1)^n^n C_s^n C_r=3^n-1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^s C_r=3^n-1.

Prove that sum_(r=0)^(s)sum_(s=1)^(n)C_(s)^(n)C_(r)=3^(n)-1

The value of sum_(r=0)^(n)sum_(s=1)^(n)*^(n)C_(5)*^(s)C_(r) is

Prove that sum_(r = 0)^n r^3 . C_r = n^2 (n +3).2^(n-3)

Prove that sum_(r = 0)^n r^3 . C_r = n^2 (n +3).2^(n-3)

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove that sum_(r = 0)^n r^2 . C_r = n (n +1).2^(n-2)

Prove the following sum_(r=0)^(n)sum_(s=0)^(n)(C_(r )*C_(s))=4^(n)

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))