Home
Class 9
MATHS
If a^x=b^y=c^z and b^2=a c , then show t...

If `a^x=b^y=c^z` and `b^2=a c ,` then show that `y=(2z x)/(z+x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(z) and b^(2)=ac, then show that y=(2zx)/(z+x)

If a^x=b^y=c^z\ a n d\ b^2=a c , prove that y=(2x z)/(x+z)

If a^x = b^y = c^z and b/a = c/b then (2z)/(x + z) is equal to:

If x/(b +c) = y/(c+a) = z/(a + b) , then show that a/(y+z-x) = b/(z+x - y) = c/(x + y - z) .

If a^2+b^2+c^2=x^2+y^2+z^2=1, then show that a x+b y+c z leq1.

If a^2+b^2+c^2=x^2+y^2+z^2=1, then show that a x+b y+c z leq1.

If x/(b + c -a) = y/(c + a - b) = z/(a + b -c) , then show that (b -c) x + (c-a) y + (a -b) z = 0 .

If (b+c-a)x = (c+a-b)y = (a+b-c) z =2,then show that (i/x+1/y) (1/y+1/z) (1/z+1/x) =abc.

If x^2/(by+cz)=y^2/(cz+ax)=z^2/(ax+by)=1 then show that a/(a+x)+b/(b+y)+c/(c+z)=1

If (a)/(y+z-x)=(b)/(z+x-y)=©/(x+y-z) then show that (x)/(b+c)=(y)/(c+a)=(z)/(a+b)