Home
Class 10
MATHS
Prove: (cot^2A(secA-1))/(1+sinA)=sec^2A(...

Prove: `(cot^2A(secA-1))/(1+sinA)=sec^2A((1-sinA)/(1+secA))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: (sinA+secA)^2+(cos"A"+"c o s e cA")^2=(1+secAcos e cA)^2 cot^2A((secA-1)/(1+sinA))+sec^2A((sinA-1)/(1+secA))=0

Prove that cot^(2)A ((secA-1)//(1+sinA))+sec^(2)A((sinA-1)/(1+secA))=0

secA(1-sinA)(secA+tanA)=1

(tanA+secA-1)/(tanA-secA+1)=(1+sinA)/(cosA)

(tanA+secA-1)/(tanA-secA+1)=(1+sinA)/(cosA)

Prove: (secA-tanA)/(secA+tanA)=(cos^2A)/((1+sinA)^2)

Prove: (secA-tanA)^2=(1-sinA)/(1+sinA)

(tanA+secA-1)/(tanA-secA+1)=(cosA)/(1-sinA)

Prove: sqrt((1+sinA)/(1-sinA))=secA+tanA