Home
Class 8
MATHS
show that (4pq+3q)^2-(4pq-3q)^2=48pq^2...

show that `(4pq+3q)^2-(4pq-3q)^2=48pq^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : (4pq+3q)^(2)-(4qp-3q)^(2)=48pq^(2)(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0

Show that: (4pq + 3q)^2 - (4pq - 3q)^2 = 48 pq^2

Show that. (i) (3x+7)^2-84x=(3x-7)^2 (ii) (9p-5q)^2+180pq=(9p+5q)^2 (iii) (4/3(m)-3/4(n))^2+2mn=16/9(m^2)+9/16(n^2) (iv) (4pq+3q)^2-(4pq-3q)^2=48pq^2 (v) (a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0

(p-q)^(2)+4pq

Show that.(i) (3x+7)2-84x=(3x-7)2( ii) (9p-5q)2+180pq=(9p+5q)2( iii) (43(m)-34(n))2+2mn=169(m2)+916(n2)( iv )(4pq+3q)2-(4pq-3q)2=48pq2(v)(a-b)(a+b)+(b-c)(b+c)+(c-a)(c+a)=0

Find the value of a, if pq ^(2) a = (4pq + 3q) ^(2) - ( 4pq - 3q) ^(2)

Verify that (11 pq + 4q) ^(2) - (11 pq -4q) ^(2) = 17pq ^(2)

Let's prove (p+q)^4 - (p-q)^4 = 8pq(p^2 + q^2)